01 Aug Photonic crystal spatial filtering in broad aperture diode laser
S. Gawali1,a), D. Gailevičius2,3, G. Garre-Werner1,4, V. Purlys2,3, C. Cojocaru1, J. Trull1 , J. Montiel-Ponsoda4, and K. Staliunas1,5
- Universitat Politècnica de Catalunya (UPC), Physics Department, Rambla Sant Nebridi 22, 08222, Terrassa, Barcelona, Spain – a) Author to whom correspondence should be addressed: sandeep.babu.gawali@upc.edu
- Vilnius University, Faculty of Physics, Laser Research Center, Saulėtekio al. 10, LT-10223, Vilnius, Lithuania
- Femtika LTD, Saulėtekio al. 15, LT-10224, Vilnius, Lithuania
- Monocrom S.L, Vilanoveta, 6, 08800, Vilanova i la Geltrú, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
Abstract
Broad aperture semiconductor lasers usually suffer from low spatial quality of the emitted beams. Due to the highly compact character of such lasers, the use of conventional intracavity spatial filters is problematic. We demonstrate that extremely compact photonic crystal spatial filters, incorporated into a laser resonator, can improve the beam spatial quality and, correspondingly, increase the brightness of the emitted radiation. We report the decrease in the M2 value from 47 down to 28 due to photonic crystal spatial intracavity filtering and the increase in the brightness by a factor of 1.5, giving a proof of principle of intracavity photonic crystal spatial filtering in broad area semiconductor lasers.This work was supported by the EUROSTARS Project No. E-10524 HIP-Lasers, as well as by Spanish Ministerio de Ciencia e Innovación and European Union FEDER through Project No. FIS2015-65998-C2-1-P. D.G. and V.P. acknowledge the financial support from “FOKRILAS” (Project No. S-MIP-17-109) from the Research Council of Lithuania.
References
- S. Zhouping, L. Qihong, D. Jingxing, Z. Jun, and W. Runrong, Opt. Express 15, 11776 (2007). https://doi.org/10.1364/OE.15.011776, Google ScholarCrossref
- E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, IEEE Photonics Technol. Lett. 5, 605–608 (1993). https://doi.org/10.1109/68.219683, Google ScholarCrossref
- J. P. Leidner and J. R. Marciante, IEEE J. Quantum Electron. 48, 1269–1274 (2012). https://doi.org/10.1109/JQE.2012.2207881, Google ScholarCrossref
- M. Chi, N. Bøgh, B. Thestrup, and P. Petersen, Appl. Phys. Lett. 85, 1107 (2004). https://doi.org/10.1063/1.1783017, Google ScholarScitation, ISI
- K. Staliunas and V. J. Sánchez-Morcillo, Phys. Rev. A 79, 053807 (2009). https://doi.org/10.1103/PhysRevA.79.053807, Google ScholarCrossref
- E. Colak, A. O. Cakmak, A. E. Serebryannikov, and E. Ozbay, J. Appl. Phys. 108, 113106 (2010). https://doi.org/10.1063/1.3498810, Google ScholarScitation, ISI
- Z. Luo, Z. Tang, Y. Xiang, H. Luo, and S. Wen, Appl. Phys. B 94, 641–646 (2009). https://doi.org/10.1007/s00340-009-3376-4, Google ScholarCrossref
- L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V. Sirutkaitis, and K. Staliunas, Phys. Rev. A 82, 043819 (2010). https://doi.org/10.1103/PhysRevA.82.043819, Google ScholarCrossref
- V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, M. Malinauskas, and K. Staliunas, Phys. Rev. A 87, 033805 (2013). https://doi.org/10.1103/PhysRevA.87.033805, Google ScholarCrossref
- V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, R. Gadonas, and K. Staliunas, Appl. Phys. Lett. 104, 221108 (2014). https://doi.org/10.1063/1.4881839, Google ScholarScitation, ISI
- D. Gailevicius, V. Koliadenko, V. Purlys, M. Peckus, V. Taranenko, and K. Staliunas, Sci. Rep. 6, 34173 (2016). https://doi.org/10.1038/srep34173, Google ScholarCrossref
- L. Maigyte and K. Staliunas, Appl. Phys. Rev. 2, 011102 (2015). https://doi.org/10.1063/1.4907345, Google ScholarScitation, ISI
- C. Brée, D. Gailevičius, V. Purlys, G. G. Werner, K. Staliunas, A. Rathsfeld, G. Schmidt, and M. Radziunas, J. Opt. 20, 095804 (2018). https://doi.org/10.1088/2040-8986/aada98, Google ScholarCrossref
- D. Gailevicius et al., “ Photonic crystal spatial filter fabrication by fs-pulsed Bessel beam,” Opt. Lett. (to be published). Google Scholar
- M. Mikutis, T. Kudrius, G. Šlekys, D. Paipulas, and S. Juodkazis, Opt. Mater. Express 3(11), 1862 (2013). https://doi.org/10.1364/OME.3.001862, Google ScholarCrossref
- P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, Laser Photonics Rev. 10(2), 230–244 (2016). https://doi.org/10.1002/lpor.201500112, Google ScholarCrossref
- V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, J. Appl. Phys. 120(1), 013102 (2016). https://doi.org/10.1063/1.4954890, Google ScholarScitation, ISI
- B. Leonhäuser, H. Kissel, A. Unger, B. Köhler, and J. Biesenbach, Proc. SPIE 8965, 896506 (2014). https://doi.org/10.1117/12.2039153, Google ScholarCrossref
- High-Power Diode Lasers: Fundamentals, Technology, Applications, edited by R. Diehl ( Springer-Verlag, Berlin Heidelberg, 2000). Google ScholarCrossref
- A. E. Siegman, Proc. SPIE 1868, 2 (1993). https://doi.org/10.1117/12.150601, Google ScholarCrossref
- A. Jechow, V. Raab, and R. Menzel, Appl. Opt. 45, 3545–3547 (2006). https://doi.org/10.1364/AO.45.003545, Google ScholarCrossref
This is the Accepted Manuscript version of an article accepted for publication in Appl. Phys. Lett. 115, 141104 (2019). AIP Publishing is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2040-8986/aada98