Photonic crystal spatial filtering in broad aperture diode laser

Photonic crystal spatial filtering in broad aperture diode laser

S. Gawali1,a), D. Gailevičius2,3, G. Garre-Werner1,4, V. Purlys2,3,  C. Cojocaru1J. Trull1 , J. Montiel-Ponsoda4, and K. Staliunas1,5

  1. Universitat Politècnica de Catalunya (UPC), Physics Department, Rambla Sant Nebridi 22, 08222, Terrassa, Barcelona, Spain – a) Author to whom correspondence should be addressed: sandeep.babu.gawali@upc.edu
  2. Vilnius University, Faculty of Physics, Laser Research Center, Saulėtekio al. 10, LT-10223, Vilnius, Lithuania
  3. Femtika LTD, Saulėtekio al. 15, LT-10224, Vilnius, Lithuania
  4. Monocrom S.L, Vilanoveta, 6, 08800, Vilanova i la Geltrú, Spain
  5. Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain

Abstract

Broad aperture semiconductor lasers usually suffer from low spatial quality of the emitted beams. Due to the highly compact character of such lasers, the use of conventional intracavity spatial filters is problematic. We demonstrate that extremely compact photonic crystal spatial filters, incorporated into a laser resonator, can improve the beam spatial quality and, correspondingly, increase the brightness of the emitted radiation. We report the decrease in the M2 value from 47 down to 28 due to photonic crystal spatial intracavity filtering and the increase in the brightness by a factor of 1.5, giving a proof of principle of intracavity photonic crystal spatial filtering in broad area semiconductor lasers.This work was supported by the EUROSTARS Project No. E-10524 HIP-Lasers, as well as by Spanish Ministerio de Ciencia e Innovación and European Union FEDER through Project No. FIS2015-65998-C2-1-P. D.G. and V.P. acknowledge the financial support from “FOKRILAS” (Project No. S-MIP-17-109) from the Research Council of Lithuania.

References

  1. S. Zhouping, L. Qihong, D. Jingxing, Z. Jun, and W. Runrong, Opt. Express 15, 11776 (2007). https://doi.org/10.1364/OE.15.011776Google ScholarCrossref
  2. E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, IEEE Photonics Technol. Lett. 5, 605–608 (1993). https://doi.org/10.1109/68.219683Google ScholarCrossref
  3. J. P. Leidner and J. R. Marciante, IEEE J. Quantum Electron. 48, 1269–1274 (2012). https://doi.org/10.1109/JQE.2012.2207881Google ScholarCrossref
  4. M. Chi, N. Bøgh, B. Thestrup, and P. Petersen, Appl. Phys. Lett. 85, 1107 (2004). https://doi.org/10.1063/1.1783017Google ScholarScitationISI
  5. K. Staliunas and V. J. Sánchez-Morcillo, Phys. Rev. A 79, 053807 (2009). https://doi.org/10.1103/PhysRevA.79.053807Google ScholarCrossref
  6. E. Colak, A. O. Cakmak, A. E. Serebryannikov, and E. Ozbay, J. Appl. Phys. 108, 113106 (2010). https://doi.org/10.1063/1.3498810Google ScholarScitationISI
  7. Z. Luo, Z. Tang, Y. Xiang, H. Luo, and S. Wen, Appl. Phys. B 94, 641–646 (2009). https://doi.org/10.1007/s00340-009-3376-4Google ScholarCrossref
  8. L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V. Sirutkaitis, and K. Staliunas, Phys. Rev. A 82, 043819 (2010). https://doi.org/10.1103/PhysRevA.82.043819Google ScholarCrossref
  9. V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, M. Malinauskas, and K. Staliunas, Phys. Rev. A 87, 033805 (2013). https://doi.org/10.1103/PhysRevA.87.033805Google ScholarCrossref
  10. V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, R. Gadonas, and K. Staliunas, Appl. Phys. Lett. 104, 221108 (2014). https://doi.org/10.1063/1.4881839Google ScholarScitationISI
  11. D. Gailevicius, V. Koliadenko, V. Purlys, M. Peckus, V. Taranenko, and K. Staliunas, Sci. Rep. 6, 34173 (2016). https://doi.org/10.1038/srep34173Google ScholarCrossref
  12. L. Maigyte and K. Staliunas, Appl. Phys. Rev. 2, 011102 (2015). https://doi.org/10.1063/1.4907345Google ScholarScitationISI
  13. C. Brée, D. Gailevičius, V. Purlys, G. G. Werner, K. Staliunas, A. Rathsfeld, G. Schmidt, and M. Radziunas, J. Opt. 20, 095804 (2018). https://doi.org/10.1088/2040-8986/aada98Google ScholarCrossref
  14. D. Gailevicius et al., “ Photonic crystal spatial filter fabrication by fs-pulsed Bessel beam,” Opt. Lett. (to be published). Google Scholar
  15. M. Mikutis, T. Kudrius, G. Šlekys, D. Paipulas, and S. Juodkazis, Opt. Mater. Express 3(11), 1862 (2013). https://doi.org/10.1364/OME.3.001862Google ScholarCrossref
  16. P. K. Velpula, M. K. Bhuyan, F. Courvoisier, H. Zhang, J. P. Colombier, and R. Stoian, Laser Photonics Rev. 10(2), 230–244 (2016). https://doi.org/10.1002/lpor.201500112Google ScholarCrossref
  17. V. Garzillo, V. Jukna, A. Couairon, R. Grigutis, P. Di Trapani, and O. Jedrkiewicz, J. Appl. Phys. 120(1), 013102 (2016). https://doi.org/10.1063/1.4954890Google ScholarScitationISI
  18. B. Leonhäuser, H. Kissel, A. Unger, B. Köhler, and J. Biesenbach, Proc. SPIE 8965, 896506 (2014). https://doi.org/10.1117/12.2039153Google ScholarCrossref
  19. High-Power Diode Lasers: Fundamentals, Technology, Applications, edited by R. Diehl ( Springer-Verlag, Berlin Heidelberg, 2000). Google ScholarCrossref
  20. A. E. Siegman, Proc. SPIE 1868, 2 (1993). https://doi.org/10.1117/12.150601Google ScholarCrossref
  21. A. Jechow, V. Raab, and R. Menzel, Appl. Opt. 45, 3545–3547 (2006). https://doi.org/10.1364/AO.45.003545Google ScholarCrossref

This is the Accepted Manuscript version of an article accepted for publication in  Appl. Phys. Lett. 115, 141104 (2019). AIP Publishing is not responsible for any errors or omissions in this version of the manuscript or any version derived from it.  The Version of Record is available online at https://doi.org/10.1088/2040-8986/aada98