Conductively Cooled Laser Bar Stack

M-Stack $\lambda 910$-920nm

Features:
- Improved cooling efficiency
- No “smile” effect
- Bars on demand
- Central wavelength on demand

Suitable for:
- Hair Removal
- Material processing
- Printing
- Defense
- Industry

M-Stack $\lambda 910$-920nm

M-STACK / 910- 920nm

Product specification are subject to change without notice. For complete details, please contact your local MONOCROM sales representative.

MONOCROM S.L.

C/Vilarrovet 6
08800 Vilanova i la Geltrú (Barcelona)
Spain
T. +34 938 149 450
F. +34 938 143 767
E. sales@monocrom.com
www.monocrom.com

UNE EN ISO 9001:2015
Laser Parameters\(^{(1,2,3)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>actively cooled stack</td>
</tr>
<tr>
<td>Wavelength ((\text{nm}))</td>
<td>910 - 920</td>
</tr>
<tr>
<td>Wavelength tolerance ([\text{nm}])</td>
<td>(\pm 20)</td>
</tr>
<tr>
<td>Spectral width ([\text{nm}])</td>
<td>3</td>
</tr>
<tr>
<td>Wavelength shift ([\text{nm/K}])</td>
<td>0.27</td>
</tr>
<tr>
<td>Output power ((\text{W}))</td>
<td>CW - up to 200 / QCW - up to 200</td>
</tr>
<tr>
<td>Operating current ([\text{A}])</td>
<td>CW < 220 / QCW < 220</td>
</tr>
<tr>
<td>Efficiency coefficient ([\text{W/A}])</td>
<td>1.2</td>
</tr>
<tr>
<td>Voltage @ connectors ((\text{V}))</td>
<td>2 - 30</td>
</tr>
<tr>
<td>Bar to bar pitch ([\text{mm}])</td>
<td>down to 0.4</td>
</tr>
<tr>
<td>Optics (optional)</td>
<td>FAC / SAC / BT</td>
</tr>
<tr>
<td>Laser bars per stack ((\text{bars}))</td>
<td>1 - 15</td>
</tr>
<tr>
<td>Smile ([\mu\text{m}])</td>
<td>< 0.3</td>
</tr>
</tbody>
</table>

No mechanical stress

Our patented solder-free technology is used in our diode bars stacks. Thanks to it clamped bars expand and contract freely during the thermal cycles of the pulsed regime avoiding mechanical stress.

1. Other wavelengths on request.
2. Specification are subjected to chips availability.
3. Expected output power per laser bar. Can varies based on current and temperature.
4. Voltage from the power supply must be higher, as due to high current there will be a voltage drop in the cables.
5. Pitch dependent