Conduction Cooled Laser Bar Stack

C-Stack λ780-830nm

Features:
- Improved cooling efficiency
- No “smile” effect
- Bars on demand
- Central wavelength on demand

Suitable for:
- Hair Removal
- Surgical Cardiology
- Ophthalmology
- Interstitial Laser induced Thermotherapy (Cancer)
- Odontology
- Material processing
- Printing

C-STACK / 780-830nm

Product specification are subject to change without notice. For complete details, please contact your local MONOCROM sales representative.

MONOCROM S.L.
C/Vilanoveta 6
08800 Vilanova i la Geltrú (Barcelona)
Spain
T. +34 938 149 450
F. +34 938 143 767
E. sales@monocrom.com
www.monocrom.com
Laser Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>conduction cooled stack</td>
</tr>
<tr>
<td>Wavelength(^1) [nm]</td>
<td>780 - 830</td>
</tr>
<tr>
<td>Wavelength tolerance [nm]</td>
<td>±20</td>
</tr>
<tr>
<td>Spectral width [nm]</td>
<td>3</td>
</tr>
<tr>
<td>Wavelength shift [nm/K]</td>
<td>0.27</td>
</tr>
<tr>
<td>Output power(^2,8) [W]</td>
<td>CW - up to 100 / QCW - up to 500</td>
</tr>
<tr>
<td>Operating current [A]</td>
<td>CW < 120 / QCW < 480</td>
</tr>
<tr>
<td>Efficiency coefficient [W/A]</td>
<td>1.2</td>
</tr>
<tr>
<td>Voltage @ connectors(^6) [V]</td>
<td>2 - 30</td>
</tr>
<tr>
<td>Bar to bar pitch [mm]</td>
<td>down to 1.5</td>
</tr>
<tr>
<td>Optics (optional)</td>
<td>FAC / SAC / BT</td>
</tr>
<tr>
<td>Bars per stack(^5)</td>
<td>1 - 15</td>
</tr>
<tr>
<td>Smile [µm]</td>
<td>< 0.3</td>
</tr>
</tbody>
</table>

1. Other wavelengths on request.
2. Expected output power. Can varies based on current and temperature.
3. Specification are subjected to chips availability.
4. Voltage from the power supply must be higher, as due to high current there will be a voltage drop in the cables.
5. Pitch dependent

No Mechanical Stress

Our patented solder-free technology is used in our diode bars stacks. Thanks to it clamped bars expand and contract freely during the thermal cycles of the pulsed regime avoiding mechanical stress.
